COURSE INFORMATON						
Course Title	Code	Semester	C + P + L Hour	Credits	ECTS	
RF Circuit Design	EE533	Fall/Spring	3 + 0 + 0	3	10	

Prerequisites

Language of Instruction	English
Course Level	Master's
Course Type	Elective
Course Coordinator	Assoc. Prof. Serkan TOPALOGLU
Instructors	Assoc. Prof. Serkan TOPALOGLU
Assistants	None
Goals	Explaining basic circuit elements and the design methods of high frequency electronics and circuit simulation.
Content	Basic principles of amplifier design, s-parameters and their usage in amplifier design, high frequency transistors and passive components, broadband impedance design techniques, high frequency oscillator design, RF and microwave mixers.

Learni	ing Outcomes	Program Outcomes	Teaching Methods	Assessment Methods
1)	Ability to recognize RF circuit components	1, 2	1	A, D
2)	Ability to characterize the RF components and circuits	2, 3	1	A, D, E
3)	Ability to analyze RF circuits	4,6	1	A, D, E
4)	Ability to design RF circuits	3, 4, 6, 11	1, 3	A, D, E
5)	Ability to simulate RF circuits	1,2, 11	1, 3	A, D, E

Teaching Methods:	1: Lecture, 2: Problem Solving, 3: Simulation, 4: Seminar, 5: Laboratory, 6: Term Research Paper
Assessment Methods:	A: Exam, B: Quiz, C: Experiment, D: Homework, E: Project

	COURSE CONTENT						
Week	Topics	Study Materials					
1	Introduction, importance of high frequency circuit design, units and symbols used in high frequency electronics, frequency spectrum.	Course Textbook					
2	Behavior of the passive components (resistor, inductor, capacitor) at high frequency	Course Textbook					
3	Investigation of transmission lines.	Course Textbook					
4	Microstrip transmission lines.	Course Textbook					
5	Smith Chart	Course Textbook					
6	Impedance matching techniques.	Course Textbook					
7	Amplifier basics	Course Textbook					
8	LNA design	Course Textbook					
9	High frequency oscillators.	Course Textbook					
10	High frequency oscillators. (cont.)	Course Textbook					
11	RF Amplifier design.	Course Textbook					
12	RF mixer design.	Course Textbook					
13	Circuit design using simulator.	Course Textbook					
14	Circuit design using simulator (cont)	Course Textbook					

RECOMMENDED SOURCES								
Textbook	Reinhold Lud Education.	wig,	Pavel	Bretchko,	RF	Circuit	Design,	Pearson
Additional Resources								

MATERIAL SHARING					
Documents	Notes and papers on the web				
Project	Project topics and contents				
Exams	Midterm Exam Questions and Solutions				

ASSESSMENT						
IN-TERM STUDIES	NUMBER	PERCENTAGE				
Assignments	3-5	40				
Project	1	60				
Total		100				
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE	1	40				
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE	1	60				
Total		100				

COUDEE	CATEGORY
COURSE	CAILGORI

Field Course

	COURSE'S CONTRIBUTION TO PROGRAM							
No	Program Learning Outcomes		Contribution					
			2	3	4	5		
1	Can reach information in breadth and depth, and can evaluate, interpret and apply this information to scientific research in the area of Electrical and Electronics Engineering.				x			
2	Can complete and apply information with scientific methods using limited or missing data; can integrate information from different disciplines.					x		
3	Sets up Electrical and Electronics Engineering problems, develops and implements innovative methods for their solutions.				x			
4	Develops new and/or original ideas and methods; finds innovative solutions to the system, component, or process design.				x			
5	Has comprehensive knowledge about the state-of-the-art techniques and methods in Electrical and Electronics Engineering and their limitations.							
6	Can design and conduct research of analytical, modeling or experimental orientation; can solve and interpret complex cases that come up during this process.				x			
7	Can communicate verbally and in writing in one foreign language (English) at the General Level B2 of the European Language Portfolio.							
8	Can assume leadership in multi-disciplinary teams; can develop solutions in complex situations, and take responsibility.							
9	Can systematically and openly communicate in national and international venues the proceedings and conclusions of the work he/she performs in Electrical and Electronics Engineering.							
10	Respects social, scientific and ethical values in all professional activities performed during the collection, interpretation and announcement phases of data.							

11	Is aware of new and emerging applications in Electrical and Electronics Engineering; investigates and learns them, whenever necessary.	x
12	Can identify the social and environmental aspects of Electrical and Electronics Engineering applications.	

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION							
Activities	Quantity	Duration (Hour)	Total Workload (Hour)				
Course Duration (including 2 midterms: 14xtotal lecture hours)	14	3	42				
Hours for off-the-classroom study (Pre-study, practice)	14	5	70				
Assignments	5	10	50				
Project	1	60	60				
Final examination	1	20	20				
Total Work Load			242				
Total Work Load / 25 (h)			9.68				
ECTS Credit of the Course			10				